x = sample(letters, 1000, replace=TRUE)
table(x)/10 # per cent
unif uniform distribution
norm normal
pois Poisson
t Student's
weibull Weibull
...
p
x = rnorm(100)
hist(x, freq=FALSE)
curve(dnorm, -3, 3, col="red", add=TRUE)
Test: A company expects 7 service requests a day.
What is the probability that one day only 2 or less requests will come in?
(Assume, requests will be Poisson-distributed.)
$$
Poisson(n, \lambda) = \frac{\lambda^n}{n!} \cdot e^{-\lambda}
$$
poiss = function(n, lambda=1.0)
lambda^n / factorial(n) * exp(-lambda)
sum(poiss(0:2, 7))
ppois(2, 7)
qqnorm(x) # quantile-quantile plot
qqline(x, lty=2)
shapiro.test(x)
ozdata <- read.csv("../data/ozone.csv")
T5 <- ozdata$Temp[ozdata$Month==5]
T7 <- ozdata$Temp[ozdata$Month==7]
T8 <- ozdata$Temp[ozdata$Month==8]
boxplot(T5, T7, T8, col="snow")
Student's t-Test
t.test(T5, T8)
t.test(T7, T8)
Kolmogorov-Smirnov Test
ks.test(T7, T8)
mean(x)
var(x)
sd(x)
sum(abs(x) <= sd(x)) / length(x)
sum(abs(x) <= 2*sd(x)) / length(x)
sum(abs(x) <= 3*sd(x)) / length(x)