Optimization with $\mathrm{R}-$ Tips and Tricks

Hans W Borchers, DHBW Mannheim

R User Group Meeting, Köln, September 2017

Introduction
"optimization : an act, process, or methodology of making something (such as a design, system, or decision) as fully perfect, functional, or effective as possible; specifically: the mathematical procedures (such as finding the maximum of a function) involved in this."

- Merriam-Webster Online Dictionary, 2017 (*)

Forms of optimization (cf. Netspeak: "? optimization"):

- Code / program / system optimization
- Search / website / server ... optimization
- Business / process / chain ... optimization
- Engine / design / production optimization
(*) First Known Use: 1857

Mathematical Optimization

A mathematical optimization problem consists of maximizing (or minimizing) a real objective function on a defined domain:

Given a set $A \subseteq R^{n}$ and a function $f: A \rightarrow R$ from A to the real numbers, find an element $x_{0} \in A$ such that $f\left(x_{0}\right) \leq f(x)$ for all x in an environment of x_{0}.

Typical problems:

- finding an optimum will be computationally expensive
- different types of objective functions and domains
- need to compute the optimum with very high accuracy
- need to find a global optimum, restricted resources
- etc.
- Unconstrained optimization
- Nonlinear least-squares fitting (parameter estimation)
- Optimization with constraints
- Non-smooth optimization (e.g., minimax problems)
- Global optimization (stochastic programming)
- Linear and quadratic programming (LP, QP)
- Convex optimization (resp. SOCP, SDP)
- Mixed-integer programming (MIP, MILP, MINLP)
- Combinatorial optimization (e.g., graph problems)

100+ Packages on the Optimization TV

adagio alabama BB boot bvls cccp cec2005benchmark cec2013
CEoptim clpAPI CLSOCP clue cmaes cmaesr copulaedas cplexAPI crs dclone DEoptim DEoptimR desirability dfoptim ECOSolveR GA genalg GenSA globalOptTests glpkAPI goalprog GrassmannOptim gsl hydroPSO igraph irace isotone kernlab kofnGA lbfgs lbfgsb3 limSolve linprog localsolver LowRankQP IpSolve IpSolveAPI matchingMarkets matchingR maxLik mcga mco minpack.Im minqa neldermead NIcOptim nleqslv nlmrt nloptr nls2 NMOF nnls onls optimx optmatch parma powell pso psoptim qap quadprog quantreg rcdd RCEIM Rcgmin rCMA Rcplex RcppDE Rcsdp Rdsdp rgenoud Rglpk rLindo Rmalschains Rmosek rneos ROI Rsolnp Rsymphony Rvmmin scs smoof sna soma subplex tabuSearch trust trustOptim TSP ucminf

- Maximum Likelihood
- Parameter estimation
- Quantile and density estimation
- LASSO estimation
- Robust regression
- Nonlinear equations
- Geometric programming problems
- Deep Learning / Support Vector Machines
- Engineering and Design, e.g. optimal control
- Operations Research, e.g. network flow problems
- Economics, e.g. portfolio optimization

Goals for this Talk

- Overview of (large, rapidly changing, still incomplete) set of tools for solving optimization problems in R
- Appreciation of the types of problems and types of methods to solve them
- Advice on setting up problems and solvers
- Suggestions for interpreting results
- Some almost real-world examples

Unfortunately, there is no time to talk about the new and exciting developments in convex optimization and optimization modelling languages.

Unconstrained Optimization

Univariate (1-dim.) Minimization

```
optimize(f = , interval = , ..., lower = min(interval),
    upper = max(interval), maximum = FALSE,
    tol = .Machine$double.eps`0.25)
optim(par = , fn = , gr = NULL, ...,
    method = "Brent",
    lower = -Inf, upper = Inf)
optimizeR(f, lower, upper, ..., tol = 1e-20,
    method = c("Brent", "GoldenRatio"),
    maximum = FALSE,
    precFactor = 2.0, precBits = -log2(tol) * precFactor,
    maxiter = 1000, trace = FALSE)
```

1-dimensional Example

```
f <- function(x) exp(-0.5*x) * sin(10*pi*x)
curve(f, 0, 1, n = 200, col=4); grid()
opt <- optimize(f, c(0, 1))
points(opt$minimum, opt$objective, pch = 20, col = 2)
```


optim() and Friends

```
optim(par, fn, gr = NULL, ...,
    method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B",
                "SANN", "Brent"),
    lower = -Inf, upper = Inf,
    control = list(), hessian = FALSE)
```

Methods / Algorithms:

- Nelder-Mead - downhill simplex method
- BFGS - "variable metric" quasi-Newton method
- CG - conjugate gradient method
- L-BFGS-B - Broyden-Fletcher-Goldfarb-Shannon
- Brent - univariate minimization, same as optimize
- SANN - Simulated Annealing [don't use !]

Nelder-Mead

Nelder-Mead iteratively generates a sequence of simplices to approximate a minimal point.

At each iteration, the vertices of the simplex are ordered according to their objective function values and the simplex 'distorted' accordingly.

- Sort function values on simplex
- Reflect compute the reflection point
- Expand compute the expansion point
- Contract (outside | inside)
- Shrink the simplex

Stop when the simplex is small enough ('tolerance').

Nelder-Mead in Action

Nelder-Mead Simplex search over Banana Function

Figure 1: Source: de.wikipedia.org

Showcase Rosenbrock

As a showcase we use the Rosenbrock function, defined for $n \geq 2$. It has has a very flat valley leading to its minimal point.

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=2}^{n}\left[100\left(x_{i+1}-x_{i}^{2}\right)^{2}+\left(1-x_{i}\right)^{2}\right]
$$

The global minimum obviously is $(1, \ldots, 1)$ with value 0 .

```
fnRosenbrock <- function (x) {
    n <- length(x)
    x1 <- x[2:n]; x2 <- x[1:(n - 1)]
    sum(100*(x1 - x2^2)^2 + (1 - x2)^2)
}
```

Available in package adagio as fnRosenbrock() with exact gradient grRosenbrock().

```
optim() w/ Nelder-Mead
```

 fn <- adagio::fnRosenbrock; gr <- adagio::grRosenbrock
 sol <- optim(rep(0, 2), fn, gr, control=list(reltol=1e-12) ;
 sol\$par
 \#\# [1] 0.9999996 0.9999992
 fn <- adagio::fnRosenbrock; gr <- adagio::grRosenbrock
 sol <- optim(rep(0, 10), fn, gr,
 control=list(reltol=1e-12, maxit=10000))
 sol\$par; sol\$counts
 \#\# [1] 0.4876501050 .2187475550 .0747724740 .0080693530 .1
 \#\# [6] 0.037545739 0.0136959220 .0272843220 .0231476460 .1
 \#\# function gradient
 \#\# 9707 NA
 Nelder-Mead Solvers

```
- dfoptim
nmk(par, fn, control = list(), ...)
nmkb(par, fn, lower=-Inf, upper=Inf,
    control = list(), ...)
```

- adagio
neldermead (fn, x0, ..., adapt = TRUE,
tol $=1 \mathrm{e}-10$, maxfeval $=10000$,
step $=\operatorname{rep}(1.0$, length (x0)))
- pracma [new]
anms(fn, x0, ...,
tol $=1 \mathrm{e}-10$, maxfeval $=$ NULL)

Adaptive Nelder-Mead

anms in pracma implements a new (Gao and Han, 2012) adaptive
Nelder-Mead algorithm, adapting to the size of the problem (i.e., dimension of the objective function).
fn <- adagio::fnRosenbrock
pracma: :anms(fn, $\operatorname{rep}(0,20)$, tol $=1 e-12$, maxfeval = 25000.
\#\# \$xmin
\#\# [1] $101 \begin{array}{lllllllllllllllllll} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
\#\#
\#\# \$fmin
\#\# [1] 5.073655e-25
\#\#
\#\# \$nfeval
\#\# [1] 22628

Exploiting the direction of "steepest descent" as computed by the negative gradient $-\nabla f(x)$ of a multivariate function.

- Steepest descent
$d_{k}=-\nabla f\left(x_{k}\right)$
- Conjugate Gradient (GC)
$d_{k}=-\nabla f\left(x_{k}\right)+\beta_{k} d_{k-1}, d_{0}=-\nabla f\left(x_{0}\right)$, e.g., $\beta_{k}=\frac{\left\|\nabla f\left(x_{k+1}\right)\right\|}{\left\|\nabla f\left(x_{k}\right)\right\|}$
(Fletcher and Reeves).
- BFGS and L-BFGS-B
$d_{k}=-H_{f}\left(x_{k}\right)^{-1} \nabla f\left(x_{k}\right), H_{f}(x)$ Hessian of f in x.

Line Searches

Given a function $f: R^{n} \rightarrow R$ and a direction $d \in R^{n}$, a line search method approximately minimizes f along the line $\{x+t d \mid t \in R\}$.
Armijo-Goldstein inequality: $0<c, \nu<1$

$$
f\left(x_{0}+t^{*} d\right) \leq f\left(x_{0}\right)+c \nu^{k} f^{\prime}\left(x_{0} ; d\right), \quad k=0,1,2, \ldots
$$

(Weak) Wolf condition: $0<c_{1}<c_{2}<1$

$$
\begin{gathered}
f\left(x_{k}+t_{k} d_{k}\right) \leq f\left(x_{k}\right)+c_{1} t_{k} f^{\prime}\left(x_{k} ; d_{k}\right) \\
c_{2} f^{\prime}\left(x_{k} ; d_{k}\right) \leq f^{\prime}\left(x_{k}+t_{k} d_{k} ; g_{k}\right)
\end{gathered}
$$

Rosenbrock with Line Search

Steepest descent direction vs. BFGS direction
Wolfe line search these two directions

Wolfe line search

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
Iteration: While $\left\|\nabla f_{k}\right\|>\epsilon$ do

- compute the search direction: $d_{k}=-H_{k} \nabla f_{k}$
- proceed with line search: $x_{k+1}=x_{k}+\alpha d_{k}$
- Update approximate Hessian inverse: $H_{k+1} \approx H_{f}\left(x_{k+1}\right)^{-1}$

L-BFGS - low-memory BFGS stores matrix H_{k} in $O(n)$ storage.
BFGS-B - BFGS with bound constraints ('active set' approach).
optim() w/ BFGS

```
optim(rep(0, 20), fn, gr, method = "BFGS",
    control=list(reltol=1e-12, maxit=1000))\$par
```

\#\# [1] $1 \begin{array}{llllllllllllllllllll} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
optim(rep(0, 20), fn, method = "L-BFGS-B",
control=list (factr=1e-12, maxit=1000))\$par \# factr.
\#\# [1] 0.9999987 0.99999840 .99999820 .99999810 .9999980 (
\#\# [8] 0.9999979 0.9999977 0.99999740 .99999690 .9999958 (
\#\# [15] 0.9999797 0.99996130 .99992430 .99985000 .9997011 (
optim(rep(0, 20), fn, gr, method = "L-BFGS-B", \# works.
control=list(factr=1e-12, maxit=1000))\$par

Best optim() usage

```
optim(par, fn, gr = function(x) pracma::grad(fn, x), ...,
    method = "L-BFGS-B"",
    lower = -Inf, upper = Inf,
    control = list(factr = 1e-10,
                maxit = 50*length(par)))
```

 - use only method = "L-BFGS-B"
 (faster, more accurate, less memory, bound constraints)
 - use factr \(=1 \mathrm{e}-10\) for tolerance, default 1 e 07
 - set maxit \(=50 *\) d.. . \(50 * d^{\wedge} 2\) (default is 100)
 - use dfoptim or pracma for gradients
 (if you don't have an analytical or exact gradient)
 - look carefully at the output

More BFGS Packages

- Ibfgsb3 interfaces the Nocedal et al. ‘L-BFGS-B.3.0’ (2011) (FORTRAN) minimizer with bound constraints.

BUT: Options like "maximum number of function calls" are not accessible. (And the result is returned as 'invisible'.)

```
sol <- lbfgsb3(par, fn, gr = NULL, lower=-Inf, upper=If
```

sol

- Ibfgs interfaces the 'libBFGS' C library by Okazaki with Wolfe line search (based on Nocedal).

BUT: Bound constraints are not accessible through the API.

```
lbfgs(fn, gr, par, invisible=1)
```


More quasi-Newton type Algorithms

- stats::nlm [don't ever use!]
- stats::nlminb [PORT routine]
nlminb(start, objective, gradient $=$ NULL, hessian $=$ NUI

```
scale = 1, control = list(), lower = -Inf, uppe`
```

- trustOptim::trust.optim [trust-region approach]
no linesearch, suitable for sparse Hessians

```
trust.optim(x, fn, gr, hs = NULL, control = list(),
    method = c("SR1", "BFGS", "Sparse"), ...)
```

- ucminf::ucminf [BFGS + line search + trust region]
ucminf(par, fn, gr = NULL, ..., control = list(), hessj
ucminf with Rosenbrock
fn <- adagio::fnRosenbrock; gr <- adagio::grRosenbrock
sol <- ucminf::ucminf(rep(0, 100), fn, gr, control=list(max
list(par=sol\$par, value = sol\$value, conv = sol\$conv, mess
\#\# \$par
\#\# [1] $1011 \begin{array}{lllllllllllllllllllllll} & 1\end{array} 1$

\#\# [71] $1 \begin{array}{llllllllllllllllllllllllll} & 1\end{array}$
\#\#
\#\# \$value
\#\# [1] 1.223554e-15
\#\#
\#\# \$conv
\#\# [1] 1
\#\#
\#\# \$mess
\#\# [1] "Stopped by small gradient (grtol)."

More John Nash Work

Thorough implementation of quasi-Newton solvers in pure R.

- Rcgmin ("conjugate gradient"")
- Rvmmin ("variable metric"")
- Rtnmin ("truncated Newton")

Apply, test, and compare different nonlinear optimization solvers for smooth, possibly bound constrained multivariate functions:

- optimx, optimr, or optimrx?
optimrx::opm(rep(0, 10), fnRosenbrock, grRosenbrock, method = "ALL")

Comparison of Nonlinear Solvers

method	value	fevals	gevals	convd	xtime
BFGS	$3.127628 \mathrm{e}-21$	291	98	0	0.003
CG	$1.916095 \mathrm{e}-12$	1107	408	0	0.010
Nelder-Mead	$8.147198 \mathrm{e}+00$	1501	NA	1	0.008
L-BFGS-B	$5.124035 \mathrm{e}-10$	78	78	0	0.001
nlm	$4.342036 \mathrm{e}-13$	NA	55	0	0.002
nlminb	$4.243607 \mathrm{e}-18$	121	97	0	0.002
lbfgsb3	$5.124035 \mathrm{e}-10$	78	78	0	0.029
Rcgmin	$3.656125 \mathrm{e}-19$	300	136	0	0.004
Rtnmin	5.403094e-13	105	105	0	0.013
Rvmmin	$2.935561 \mathrm{e}-27$	116	72	0	0.007
ucminf	$1.470165 \mathrm{e}-15$	77	77	0	0.002
newuoa	$3.614733 \mathrm{e}-11$	1814	NA	0	0.022
bobyqa	$6.939585 \mathrm{e}-10$	2142	NA	0	0.025
nmkb	$9.099242 \mathrm{e}-01$	1500	NA	1	0.083
hjkb	$8.436900 \mathrm{e}-07$	4920	NA	0	0.033
lbfgs	$9.962100 \mathrm{e}-13$	NA	NA	0	0.001

Excurse: Computing Gradients

- manually
- symbolically: package Deriv
- numerically: packages numDeriv or pracma

$$
\begin{aligned}
& \text { gr <- function(x) numDeriv::grad(fn, x) \# simple, or: } \\
& \text { gr <- function(x) pracma::grad(fn, x, heps=6e-06) \# ct }
\end{aligned}
$$

- complex step derivation

```
gr <- function(x) pracma::grad_csd(fn, x)
```

- automated differentiation [not yet available]

Central-difference Formula

```
\(\nabla f(x)=\left(\frac{f(x)}{\partial x_{1}}, \ldots, \frac{f(x)}{\partial x_{n}}\right) \quad\) and \(\quad \frac{d f(x)}{d x}(x) \approx \frac{f(x+h)-f(x-h)}{2 \cdot h}\)
pracma: :grad
function (f, \(x 0\), heps \(=\).Machine\$double.eps^(1/3), ...)
\{
    \# [...input checking...]
    n <- length (x0)
    hh <- rep(0, n)
    gr <- numeric(n)
    for (i in 1:n) \{
        hh[i] <- heps
        \(\operatorname{gr}[i]<-(f(x 0+h h)-f(x 0-h h)) /(2 * h e p s)\)
        hh [i] <- 0
        \}
        return(gr)
\}
```

Optimization with Constraints

- box/bound constraints: $l_{i} \leq x_{i} \leq u_{i}$ [trick: the 'transfinite' approach]
- linear inequality constraints: $A x \leq 0$
- linear equality constraints: $A x=b$ [trick: the 'hyperplane' approach]
- quadratic constraints
- inequality constraints in general
- equality and inequality constraints

The 'transfinite' Trick

If the solver does not support bound constraints $I_{i} \leq x_{i} \leq u_{i}$, the transfinite approach will do the trick.
Generate a smooth (surjective) function $h: R^{n} \rightarrow\left[I_{i}, u_{i}\right]$, e.g.

$$
h: x_{i} \rightarrow l_{i}+\left(u_{i}-l_{i}\right) / 2 \cdot\left(1+\tanh \left(x_{i}\right)\right)
$$

and optimize the composite function $g(x)=f(h(x))$, i.e.

$$
\begin{gathered}
g: R^{n} \rightarrow\left[I_{i}, u_{i}\right] \rightarrow R \\
x^{*}=\operatorname{argmin}_{\mathrm{x}} \mathrm{~g}(\mathrm{x})=\mathrm{f}(\mathrm{~h}(\mathrm{x}))
\end{gathered}
$$

then $x_{\min }=h\left(x^{*}\right)$ will be a minimum of f in $\left[I_{i}, u_{i}\right]$.

Example: 'Transfinite’ Approach
Minimize the Rosenbrock function in 10 dimensions with
$0 \leq x_{i} \leq 0.5$.
Tf <- adagio::transfinite (0, 0.5, 10)
h <- Tf\$h; hinv <- Tf\$hinv
p0 <- rep(0.25, 10)
$\mathrm{f}<-\mathrm{function}(\mathrm{x}) \mathrm{fn}(\mathrm{hinv}(\mathrm{x}))$ \# $f: R$ n $-->R$
g <- function(x) pracma::grad(f, x)
sol <- lbfgs::lbfgs(f, g, p0, epsilon=1e-10, invisible=1)
hinv(sol\$par); sol\$value
\#\# [1] $0.50000000000 .26306598270 .08003111370 .016574234:$
\#\# [6] $0.01021200520 .01020841080 .01020421210 .010004085($
\#\# [1] 7.594813

Linear Inequality Constraints

Optimization with linear constraints only: $A x \geq 0$ (or $A x \leq 0$)

```
constrOptim(theta, f, grad, ui, ci, mu = 1e-04, contro:
    method = if(is.null(grad)) "Nelder-Mead" e:
    outer.iterations = 100, outer.eps = 1e-05,
    hessian = FALSE)
```

- ui $\% * \%$ theta - ci $>=0$ corresponds to $A x \geq 0$
- Bounds formulated as linear constraints (even $x_{i} \geq 0$)
- theta must be in the interior of the feasible region
- Inner iteration still calls optim

Recommendation: Do not use constrOptim. Instead, use an 'augmented Lagrangian' solver, e.g. alabama:: auglag.

Trick: Linear Equality Constraints

Task: $\quad \min !f\left(x_{1}, \ldots, x_{n}\right) \quad$ s.t. $A x=b$
Let b_{1}, \ldots, b_{m} be a basis of the nullspace of A, i.e. $A b_{i}=0$, and x_{0} a special solution $A x_{0}=b$. Define a new function $g\left(s_{1}, \ldots, s_{m}\right)=f\left(x_{0}+s_{1} b_{1}+\ldots+s_{m} b_{m}\right)$ and solve this as a minimization problem without constraints:

$$
s=\operatorname{argmin} g\left(s_{1}, \ldots, s_{m}\right)
$$

Then x min $=x_{0}+s_{1} b_{1}+\ldots+s_{m} b_{m}$ is a (local) minimum.
xmin <- lineqOptim(rep(0, 3), fnRosenbrock, grRosenbror
Aeq $=c(1,1,1)$, beq $=1)$
xmin
[1] 0.57136510 .32635190 .1022830

Example: Linear Equality

```
A <- matrix(1, 1, 10)
N <- pracma::nullspace(A) # size 10 9
    # x1 + ... + xn = 1
x0 <- qr.solve(A, 1) # A x = 1
fun <- function(x) fn(x0 + N %*% x) # length(x) = 9
sol <- ucminf::ucminf(rep(0, 9), fun)
xmin <- c(x0 + N %*% sol$par)
xmin; sum(xmin)
\begin{tabular}{llllll} 
\#\# & {\([1]\)} & 0.559312323 & 0.314864715 & 0.102103618 & \(0.01369578 ؛\) \\
\#\# & {\([6]\)} & 0.003318010 & 0.003316801 & 0.003316309 & \(0.00325210 ؛\)
\end{tabular}
## [1] 1
```

fn(xmin)

Augmented Lagrangian Approach

Task: $\quad \min !f(x)$ s.t. $g_{i}(x) \geq 0, h_{j}(x)=0$
Define the augmented Lagrangian function L as

$$
L(x, \lambda ; \mu)=f(x)-\sum_{j} \lambda_{j} h_{j}(x)+\frac{1}{2 \mu} \sum_{j} h_{j}^{2}(x)
$$

The inequality constraints $g_{i}(x) \geq 0$ are included by introducing slack variables s_{i} and replacing the inequality constraints with

$$
g_{i}(x)-s_{i}=0, \quad s_{i} \geq 0
$$

The bound constraints are treated differently (e.g., through the LANCELOT algorithm).

Augmented Lagrangian Solvers

- alabama

auglag(par, fn, gr, hin, hin.jac, heq, heq.jac, control.outer=list(), control.optim = list(), ..

- NLoptr

```
auglag(x0, fn, gr = NULL, lower = NULL, upper = NULL,
    hin = NULL, hinjac = NULL, heq = NULL, heqjac =
    localsolver = c("COBYLA"), localtol = 1e-6, in\epsilon
    nl.info = FALSE, control = list(), ...)
```

- Rsolnp
- NIcOptim (Sequential Quadratic programming, SQP)
- Rdonlp2 (removed from CRAN, see R-Forge's Rmetrics)

Example with alabama: :auglag

Minimize the Rosenbrock function with constraints
$x_{1}+\ldots+x_{n}=1$ and $0 \leq x_{i} \leq 1$ for all $i=1, \ldots, n$.
fheq <- function(x) sum(x) - 1
fhin <- function(x) c(x)
sol <- alabama::auglag(rep(0, 10), fn, gr, heq = fheq, hin control.outer $=$ list $\left(\right.$ trace $=$ FALSE, method $="_{1}$
print(sol\$par, digits=5)

\#\#	$[1]$	$5.5707 \mathrm{e}-01$	$3.1236 \mathrm{e}-01$	$1.0052 \mathrm{e}-01$	$1.3367 \mathrm{e}-02$	3
\#\#	$[6]$	$3.3082 \mathrm{e}-03$	$3.3071 \mathrm{e}-03$	$3.3069 \mathrm{e}-03$	$3.2854 \mathrm{e}-03$	-7

sum (sol\$par)
\#\# [1] 1

The nloptr Package (NLopt Library)

- COBYLA (Constrained Optimization By Linear Approximation)
cobyla(x0, fn, lower = NULL, upper $=$ NULL, hin $=$ NULL, nl.info = FALSE, control = list(), ...)
- slsqp (Sequential Quadratic Programming, SQP)
slsqp(x0, fn, gr = NULL, lower = NULL, upper = NULL, hin = NULL, hinjac = NULL, heq = NULL, heqjac = NULL, nl.info $=$ FALSE, control $=$ list(), ...)
- auglag (Augmented Lagrangian)
auglag(x0, fn, gr = NULL, lower = NULL, upper = NULL, hin = NULL, hinjac = NULL, heq = NULL, heqjac = localsolver = c("COBYLA", "LBFGS", "MMA", "SLSC nl.info = FALSE, control = list(), ...)

Quadratic Optimization

Quadratic Programming

Quadratic Programming (QP) is the problem of optimizing a quadratic expression of several variables subject to linear constraints.

$$
\begin{aligned}
\text { Minimize } & \frac{1}{2} x^{\top} Q x+c^{T} x \\
\text { s.t. } & A x \leq b
\end{aligned}
$$

where Q is a symmetric, positive (semi-)definite $n \times n$-matrix, c an n-dim. vector, A an $m \times n$-matrix, and b an m-dim. vector.

For some solvers, linear equality constraints are also allowed.
Example: The enclosing ball problem

Quadratic Solvers

Standard solver for quadratic problems in R is solve. QP in package quadprog. The matrix Q has to be positive definite.
solve.QP(Dmat, dvec, Amat, bvec, meq=0, factorized=FALs

Package	Function	Matrix	Timings
quadprog	solve.QP	pdef	1
kernlab	ipop	spdef	50
LowRankQP	LowRankQP	spdef	2
DWD	solve_QP_SOCP	pdef	9500
coneproj	qprog	pdef	-

Nonsmooth Optimization

Functions defined as maximum are not smooth and cannot be optimized through a straightforward gradient-based approach.
Task: $\quad \min !f(x)=\max \left(f_{1}(x), \ldots, f_{m}(x)\right)$
Instead, define a smooth function $g\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=x_{n+1}$ and minimze it under constraints

$$
x_{n+1} \geq f_{i}\left(x_{1}, \ldots, x_{n}\right) \quad \text { for all } i=1, \ldots, m
$$

The solution $\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$ returns the minimum point $x \min =\left(x_{1}, \ldots, x_{n}\right)$ as well as the minimal value $f \min =x_{n+1}$.
[Cf. the example in Chapter ?? in the bookdown text.]

A linear least-squares (LS) problem means solving min $\|A x=b\|_{2}$, possibly with bounds or linear constraints.

The function qr.solve(A, b) from Base R solves over- and underdetermined linear systems in the least-squares sense.

- nnls (Lawson-Hansen algorithm)
linear LS with non-negative/-positive constraints
- bvls (Stark-Parker algorithm)
linear LS with bound constraints $I \leq x \leq u$
- pracma::1sqlincon(A, b, ...)
linear LS with linear equality and inequality constraints (applies a quadratic solver)

Nonlinear Least-squares

The standard nonlinear LS estimator for model parameter, given some data, in Base R is:

```
nls(formula, data, start, control, algorithm[="plinear
    trace, subset, weights, na.action, model,
    lower, upper, ...)
```


Problems:

too small or zero residuals

- "singular gradient" error message (R-help, Stackoverflow)
- too many local minima, proper starting point (cf. nls2 with random or grid-based start points)
- bounds require the 'port' algorithm (Port library) (recommended anyway)

Stabilized' Nonlinear LS

Modern nonlinear LS solvers use the Levenberg-Marquardt method (not Gauss-Newton) to minimize sums of squares.

- minpack.lm

```
nlsLM(formula, data = parent.frame(), start, jac = NULI
    algorithm = "LM", control = nls.lm.control(),
    lower = NULL, upper = NULL, trace = FALSE, ...)
```

- nlmrt
nlxb(formula, start, trace=FALSE, data, lower=-Inf, upt masked=NULL, control, ...)

Cf. also pracma::Isqnonlin(fun, $\times 0$, options $=\operatorname{list}(), \ldots$)

Tip: Rosenbrock as LS Problem

Redefine Rosenbrock as vector-value function:

```
fn <- function(x) {
    n <- length(x)
    x1 <- x[2:n]; x2 <- x[1:(n - 1)]
    c(10*(x1 - x2`2), 1 - x2)
}
```

and now apply pracma's lsqnonlin:

```
    lsqnonlin(fn, rep(0, 20))
    ## $x
    ## [1] 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
    ## $ssq
    ## [1] 3.037124e-19
```

Quantile Regression
Median (or: L^{1}) Regression: $\min !\sum|y-A x|$
(aka "least absolute deviation"" (LAD) regression)

- quantreg
rq(formula, tau $=0.5$, data, subset, weights, na.action, method = "br", model = TRUE, contrasts, ...)
- pracma

L1linreg(A, b, p = 1, tol $=1 \mathrm{e}-07$, maxiter $=200$)
solves the linear system $A x=b$ in an L^{p} sense, i.e. minimizes the term $\sum|b-A x|^{p}$ (for $0<p \leq 1$) by applying an
"iteratively reweighted least square" (IRLS) method.

DE Solvers

Differential Evolution (DE) is a relatively simple genetic algorithm variant, specialized for real-valued functions (10-20 dims).

- DEoptim

DEoptim(fn, lower, upper,

```
control = DEoptim.control(trace = FALSE), ..., fnMa
```

- RcppDE

DEoptim(fn, lower, upper, control = DEoptim.control(),

- DEoptimR

JDEoptim(lower, upper, fn,
constr $=$ NULL, meq $=0$, eps $=1 \mathrm{e}-05, \mathrm{NP}=10 * \mathrm{~d}[$, .

CMA-ES Solvers

Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) is an evolutionary algorithm for continuous optimization problems (adapting the covariance matrix). It is quite difficult to implement, but is applicable to dimensions up to 50 or more.

- Packages that contain CMA-ES solvers:
cmaes
cmaesr
rCMA
parma::cmaes
Rmalschains
adagio::pureCMAES

```
pureCMAES(par, fun, lower = NULL, upper = NULL, sigma =
        stopfitness = -Inf, stopeval = 1000*length(pe
```

- Simulated Annealing (SA) GenSA
- Genetic Algorithms (GA)

GA, genalg, SOMA, rgenoud

- Particle Swarm Optimization (PSO)
pso, psoptim, hydroPSO
NMOF: DEopt, GAopt, PSopt
NLoptr: crs2lm, direct, mlsl, isres, stogo

The gloptim Package

Package gloptim incorporates and compares 25 stochastic solvers
The following is a typical output, here only showing the results of CMA-ES and DE solvers for the 'Runge' problem:

solver	package	fmin	time
purecmaes	adagio	0.06546780	43.583
cmaes	parma	0.06546780	23.523
cmaoptim	rCMA	0.06546780	91.257
malschains	Rmalschains	0.06546781	76.457
deopt	NMOF	0.06546876	75.809
deoptimr	DEoptimR	0.06549435	57.712
simplede	adagio	0.06573988	84.000
cma_es	cmaes	0.07430865	7.208
cmaes	cmaesr	0.07503498	8.305
cppdeoptim	RcppDE	6.82525344	17.050
deoptim	DEoptim	7.28454226	39.287

Future Developments

```
ROI - R Optimization Infrastructure
    Available Plugins:
    glpk, symphony, quadprog, ipop, ecos, scs, nloptr, cplex, ...
library(ROI); library(ROI.plugin.glpk) # ..
v <- c(15, 100, 90, 60, 40, 15, 10, 1)
w <- c( 2, 20, 20, 30, 40, 30, 60, 10)
mat <- matrix(w, nrow = 1)
con <- L_constraint(L = mat, dir = "<=", rhs = 105)
pro <- OP(objective = v, constraints = con,
    types = rep("B", 8), maximum = TRUE)
ROI_applicable_solvers(pro) # [1] "clp" "glpk"...
sol <- ROI_solve(pro, solver = "ecos")
## Optimal solution found.
## The objective value is: 2.800000e+02
```


CVXR

CVXR provides an R modeling language for convex optimization problems (announced UseR!2016, not yet ready).

Example: Estimating a discrete distribution, e.g.
$\max !\quad \sum_{i=1}^{m}-w_{i} \log w_{i}$
s.t. $\quad w_{i} \geq 0, \quad \sum w_{i}=1, \quad X^{\top} w=b$
library (CVXR)
w <- Variable(m)
obj <- SumEntries(Entr(w)) \# entropy function
constr <- list(w >= 0, SumEntries(w) == 1, t(X) \%*\% w == b)
pro <- Problem(Maximize(obj), constr)
sol <- solve(pro)
sol\$w

Using Julia Solvers

Ipopt (Interior Point OPTimizer) is a software package for large-scale nonlinear optimization (with nonlinear equality and inequality constraints).

- difficult to install (extra components needed)
- ECLIPSE license (not allowed on CRAN?)

There is an easy-to-install lpopt.jl package for Julia.
With the R packages $X R$ and XRJulia (John Chambers, 2016)
it will be possible to utilize this with a new R package ipoptjlr.
library(ipoptjlr)
julia_setup("path_to_julia")
IPOPT(x, x_L, x_U, g_L, g_U, eval_f, eval_g, eval_grad_f, jac_g1, jac_g2, h1, h2)

Using the NEOS Solvers
"The NEOS Server https://neos-server.org/neos/ is a free internet-based service for solving numerical optimization problems.
[It] provides access to more than 60 state-of-the-art [free and commercial] solvers."
rneos: XML-RPC Interface to NEOS

```
# submit job to the NEOS solver
neosjob <- NsubmitJob(xmlstring, user = "hwb", interface =
    id = 8237, nc = CreateNeosComm())
neosjob
# The job number is: 3838832
# The pass word is : wBgHomLT
# getting info about job
NgetJobInfo(neosjob) # "nco" "MINOS" "AMPL"
NgetFinalResults(neosjob)
```

Epilogue
"What can go wrong?"

- Modell, constraints, gradients, ..
- Local: bad starting values Global: no guaranteed optimum
- Applying appropriate solvers
- Setting solver controls
- Special problems, e.g.

Non-smooth objective functions, noise, ..

- Understanding solver output (and error messages)
convergence, accuracy, no. of loops and function calls
- Checking results
"Most methods work most of the time." - John Nash

References

- Theussl, S., and H. W. Borchers (2017). CRAN Task View: Optimization and Mathematical Programming.
URL: https://CRAN.R-project.org/view=Optimization
- Nash, J. C. (2014). Nonlinear Parameter Optimization Using R Tools. John Wiley and Sons, Chichester, UK.
- Varadhan, R., Editor (2014). Special Issue: Numerical Optimization in R: Beyond optim. Journal of Statistical Software, Vol. 60.
- Bloomfield, V. A. (2014). Using R for Numerical Analysis in Science and Engineering. CRC Press, USA. (Chapter 7, 40 pp.)
- Cortez, P. (2014). Modern Optimization With R. Use R! Series, Springer Intl. Publishing, Switzerland.

